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Enhancing Both Network and User Performance
for Networks Supporting Best Effort Traffic

Shanchieh Jay Yang, Gustavo de Veciana

Abstract—With a view on improving user perceived performance on net-
works supporting best effort flows, e.g., multimedia/data file transfers, we
propose a family of bandwidth allocation criteria that depends on the resid-
ual work of on-going transfers. Analysis and simulations show that allocat-
ing bandwidth in this fashion can significantly improve the user perceived
delay, bit transmission delay, and throughput over traditional approaches,
e.g., by 58% on an 80% loaded linear network. A simple implementation
based on TCP Reno, exemplifies how one might approach practically re-
alizing such gains. We discuss several other advantages of incorporating
such differentiation at the transport level. In particular we make the case
that favoring small transfers combined with user impatience or peak rate
constraints, both of which are natural mechanisms for users to express the
utility of completing transfers, offers a lightweight approach to achieving
good overall network goodput and/or utility for best effort networks.

I. INTRODUCTION

In this paper we consider the question of how to optimize
both network and user perceived performance for ‘best effort’
services, e.g., file transfers mediated by TCP. Given that a large
fraction (e.g., 90% [1]) of the volume on today’s Internet cor-
responds to this type of traffic, it is indeed surprising that this
problem has not been more prominently addressed. At first
glance the question of enhancing the performance seen by best
effort flows may seem paradoxical, in fact it is not. A key prop-
erty of a typical best effort transfer, is that it is malleable in the
sense that ‘instantaneous’ throughput variations throughout the
transfer are tolerable, as long as the flow level performance is
adequate, e.g., delay, bit transmission delay (BTD) (delay/size),
or perceived throughput (size/delay). This tolerance to instan-
taneous throughput variations, underlies the traditional notion
of ‘best effort’ where the emphasis is placed on adapting the
user’s instantaneous transmission rate (window) to share, possi-
bly time varying, available resources ‘fairly’. However a more
natural design objective would be to optimize for the users’ per-
ceived performance rather than an artificial notion of fairness.
Keeping with the spirit of ‘best effort’ performance it makes
sense to design networks so as to optimize the average perfor-
mance seen by users rather than making individual guarantees.
Thus both from a network’s and users’ points of view, design-
ing mechanisms that achieve enhancements in the average delay,
BTD, etc., for best effort networks makes good sense.

A. Is overprovisioning a reasonable answer to performance
problems?

A common, not unreasonable argument is often made that one
can enhance user perceived performance by simply overprovi-
sioning the network. However, ‘efficient’ overprovisioning of
heterogeneous IP-based networks is itself not a simple task, re-
quiring, among other things, fairly predictable traffic and growth
models. Unfortunately recent experience has shown that even
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aggregated data traffic may exhibit long-range dependence, non-
stationarity, and bursty growth on longer time scales, i.e., is hard
to model. Moreover, even if a single carrier could overcome this
problem, the heterogeneity of the current inter-networking in-
frastructure would make coordinating inter-carrier agreements
to avoid mismatches exceedingly difficult. Just as “nature ab-
hors a vacuum”, one should recognize that highly overprovi-
sioned resources will quickly be filled, with possibly unwanted
traffic. Thus even in the unlikely scenario where an institu-
tion/provider is willing to pay to overprovision their network
infrastructure, this would need to be supplemented by fairly so-
phisticated monitoring tools to ensure that the benefits are in-
deed seen by their most valued customers. Moreover, given
that resources are likely to become overloaded, even occasion-
ally, questions concerning user behavior upon overload need to
be faced. For example, a recent study [2] claims that 11% of
the TCP mediated files transfers (to a given server) were inter-
rupted, corresponding to an excess of 20% of the total traffic
volume, i.e., 20% of the transmitted data went to waste. To-
gether, these arguments suggest that the costly capacity, infras-
tructure, and technology commitments required to achieve bet-
ter performance for best effort flows are not likely to be based
on overprovisioning alone.

B. Enhancing performance through better network protocols

In order to achieve a more efficient use of network resources,
we propose to exploit the malleability of best effort traffic. In
particular, we suggest allocating more ‘instantaneous’ band-
width to flows with smaller residual size. Such differentiation,
although seemingly ‘unfair’ at a given time instance, in fact ben-
efits the whole over time, i.e., enhances the average ‘flow level’
quality of service (QoS), e.g., delay, BTD, or perceived through-
put. In fact as will be discussed in the sequel, for heavy tailed
flow size distributions, this will not only improve the average,
but also tend to improve the performance seen by the major-
ity of flow sizes except for the very largest [3], [4]. The key
idea is that by speeding up flows with small residual work to
be done, one expedites short transfers without necessarily com-
promising the large ones. On a general network, in addition to
differentiating based on the residual flow sizes, one needs to ac-
count for the degree of service parallelism that can be achieved,
e.g., giving priority to multiple transfers on short routes versus
‘small’ transfers on longer routes. The question then is how to
make the most out of limited network resources while achieving
high concurrency. In this paper, we will start by examining the
single (bottleneck) link case and then progress to study the net-
work case, where we propose a general class of dynamic band-
width allocation schemes - see

�
III. The proposed scheme aims

at exploring tradeoffs between favoring small flows and achiev-
ing high degrees of parallelism in allocating bandwidth to flows.
We then briefly illustrate a simple implementation at the trans-
port layer, i.e., a modification of TCP, and discuss representative
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packet level simulations in
�
IV.

While our analysis in
�
III focuses on optimizing the aver-

age BTD1, we take a step further to investigate the performance
impact of our proposed size-based differentiation scheme from
both the user’s and network/service provider’s perspective in

�
V. In particular, we consider network provisioning, user im-

patience behavior upon system overloads, and scenarios where
flows are peak rate constrained. Note that both users’ impa-
tience and access peak rate constraints are natural mechanisms
for users (of best effort service) to express the utility of com-
pleting transfers. We will make the case that favoring smaller
transfers combined with these two natural mechanisms offers a
lightweight approach to achieving good overall network utility.

There are various approaches to achieving size-based differ-
entiation. The focus of this paper is on bandwidth allocation,
as realized by transport level protocols. This provides a robust
mechanism to achieve differentiation among flows sharing bot-
tlenecked resources, wherever those might be in the network. In

�
VI we conclude this paper by offering some remarks on other

opportunities for size based differentiation, e.g., at the server
side [5], within web browsers, within edge and core routers [6],
or even at the network level through routing [7], [8], [10], [9]. In
the next section we provide a formal description of the dynamic
bandwidth allocation problem and review some of the related
work in this area.

II. PROBLEM DESCRIPTION AND RELATED WORK

Traditional research on bandwidth allocation for networks
supporting best effort transport, e.g., TCP or ABR service, has
for the most part focused on considering a static regime, i.e., the
bandwidth allocation depends on the fixed number of flows on
each route. The focus has been on possible bandwidth allocation
criteria, e.g., max-min, proportionally, or potential delay fair-
ness, and devising stable decentralized mechanisms to achieve
such allocations, see e.g., [11], [12], [13], [14], [15], [16]. We
shall refer to these as the ‘traditional’ fairness criteria. The basic
insight underlying this body of work is to associate a (concave)
utility function (of the allocated bandwidth) to each user and to
devise mechanisms which optimize the overall network utility
subject to capacity constraints. Interestingly, one can attempt
to reverse engineer the Internet, by inferring the implied util-
ity functions associated with current transport mechanisms, see
e.g., [17]. Overall this research lacks a clear articulation of the
impact that the bandwidth allocation criterion, i.e., the choice
of utility function, has on flow-level performance in a dynamic
regime where flows come and go.

This paper focuses on the dynamic bandwidth allocation
problem. That is, determining the possibly ‘time varying’ band-
width to allocate to a set of flows subsequent to their arrival
to the network such that the overall performance is optimized.
We consider a network consisting of a set of links L where link
l � L has capacity cl bps. Each file transfer j � J is modeled
as a fluid flow with a known initial volume of p j bits of data
to send. Upon arrival/initiation at time a j, flow j is assigned a
route denoted by r j � R and contends for bandwidth on the links

1We focus on the BTD metric since it captures a reasonable user expectation
that larger files takes longer to complete.

along its route.2 The set of links traversed by route r is captured
by a 0-1 matrix A where Alr is 1 if route r traverses link l and 0
otherwise. We let x j � �

x j
�
t ��� t � 0 � denote the bandwidth al-

located to flow j as a function of time. We assume without loss
of generality that it is zero prior to a flow’s arrival and after it
completes. The time to complete flow j, i.e., its transfer delay, is
denoted by d j and depends on its size p j and the possibly time
varying bandwidth the flow is allocated. For the most part in
this paper, we will focus on the bit transmission delay (BTD) as
the performance measure of interest where the BTD for flow j
is given by b j � d j � p j. Notice that from a flow’s point of view,
minimizing the BTD is equivalent to maximizing the through-
put. We summarize the notation in Table I and formally define
the problem of interest as follows.

Problem 1 (Dynamic Bandwidth Allocation)

min
1�
J
� ∑

j 	 J
b j � 1�

J
� ∑

j 	 J

d j

p j
�

over x � �
x j : R 
�� R 
� j � J ���

s � t � p j �
� a j 
 d j

a j

x j
�
τ � dτ ��� j � J �

∑
j 	 J

Alr j x j
�
t ��� cl ��� t � 0 � l � L �

TABLE I

SUMMARY OF NOTATION

Set of Links: L capacities cl � l � L
Set of Routes: R link-route incidence matrix Alr

Set of Jobs: J
�
a j � p j � r j � for flow j

(arrival time, size, route)
Bandwidth Allocation x � �

x j
�
t ��� t � 0 � j � J �

Performance Metrics d j, b j � d j � p j, 1�
J
� ∑ j 	 J d j � p j

delay, BTD, avg BTD

Notice that the problem stated above aims at minimizing the
average BTD for a ‘finite’ set of jobs J with known arrival
times - this is the so called off-line regime, which serves to
identify the best one could do. In practice future arrival times
would not be known whence only allocation policies that de-
pend on past events, i.e., on-line policies are permissible. If
further the arrivals and flow sizes were modeled by station-
ary stochastic processes, one can consider optimizing the cus-
tomer average BTD over stationary causal policies, i.e., mini-
mize ��� B � � lim � J � � ∞

1�
J
� ∑ j 	 J B j, where B denotes the typical

BTD experienced under a stationary dynamic bandwidth allo-
cation policy. We refer to bandwidth allocation policies that
minimize the average BTD as BTD-optimal.

The authors of [18], [19], [20], [21], [22] have considered
stochastic models to capture the dynamic behavior of existing
network mechanisms, e.g., TCP and traditional fairness crite-
ria. One lesson from this body of work is that, even for a given
bandwidth allocation policy, it is difficult to analytically model
the performance seen by users in a dynamic network setting,
except for specially structured topologies. To our knowledge,

2For simplicity we assume routes are stable, i.e., for the most part flow asso-
ciated with a given transfer follows the same route.
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the only existing work that attempts to find a BTD-optimal pol-
icy at the network level was conducted in [23]. Their results
however suggest that the problem is NP-hard unless one allows
‘resource augmentation’. In fact, one can show that even for
flows sharing a single link, there is no online algorithm that
minimizes the average BTD [24]. One key idea drawn from the
single link case is that the Shortest Remaining Processing Time
first (SRPT) scheduling discipline performs well for the average
delay as well as BTD [22], [24], [3]. However, to our knowl-
edge, no systematic allocation criterion and associated transport
mechanism have been proposed to enhance user perceived per-
formance on a network.

Due to the inherent difficulty of the online version of this
problem, in the sequel we will consider the ‘transient’ regime
which is tractable. More specifically, we consider the set of
ongoing flows J

�
t � at time t where some of them may have

been partially transferred, and the goal is to minimize the over-
all ‘residual BTD’, where the residual BTD of flow j at time
t is defined as b j

�
t � � �

f j � t � � p j, and f j denotes the time at
which the transfer completes. Our investigation of the transient
regime provides an avenue for determining greedy policies for
the online case, where, at each point in time, bandwidth is allo-
cated so as to complete the ‘current’ set of ongoing flows in a
BTD-optimal manner.

III. RESIDUAL SIZE BASED DIFFERENTIATION

A. Sharing bandwidth on a single link

We begin by considering the case where flows contend for
bandwidth on a single link. Despite its simplicity this model
captures the scenario where a set of flows are constrained by
the same bottleneck, e.g., an access gateway, and offers basic
insights that apply to the general network case.

A.1 Fair sharing

In the context of sharing a single link, traditional fairness cri-
teria, e.g., max-min and proportional fair, reduce to fair sharing,
i.e., each ongoing flow gets an equal share of the available band-
width. A collection of TCP flows with the same round trip time
would approximately realize an equal share of the capacity. For
simplicity, we consider an idealization where each ongoing flow
j � J

�
t � at time t is assigned a bandwidth x j

�
t � � c � n � t � where

c is the link capacity and n
�
t � � �

J
�
t � � is the total number of on-

going flows at time t. We shall consider this to be our baseline
bandwidth allocation policy for the single link case.

While ‘fairness’ has been discussed at length, policies that
achieve fair shares do not necessarily achieve good user per-
ceived performance. In particular one can prove that in the case
of a single link, the average BTD (and delay) achieved by poli-
cies that share non-trivial amounts of capacity among multiple
flows can always be improved.

Lemma 1: Consider a set of flows contending for capacity on
a single link. Any bandwidth allocation policy that allocates
positive bandwidths to more than one flow at a time is not BTD-
optimal.
The proof, given in the appendix, relies on showing that one can
always improve upon policies that share bandwidth among on-
going flows by ‘speeding’ up those that would complete earlier,
i.e., giving them the full link capacity, without penalizing any

of the others. Note that the flows that will complete earlier are
those with smaller sizes or residual work to be done. This sug-
gests one might consider alternative bandwidth allocation poli-
cies that differentiate based on flows’ (residual) sizes.

A.2 Size-dependent differentiation

A well known size-dependent scheduling, here viewed as a
bandwidth allocation policy, is the Shortest Remaining Process-
ing Time first (SRPT) discipline. Let p j

�
t � denote the residual

work associated with flow j at time t. The SRPT policy as-
signs the full link capacity to a flow j

� � J
�
t � with the smallest

residual work at time t, i.e., j
� � argmin j 	 J

�
t � � p j

�
t � � . SRPT is

known to minimize the average delay for flows sharing a sin-
gle link [25], and was recently shown to be 2-competitive for
the average BTD metric [24]. With a view on further enhanc-
ing performance and developing allocation policies that can be
implemented, below we propose two novel policies to realize
size-dependent differentiation.

First we shall consider a policy that allocates the full capacity
to the flow j

�
having the smallest product of original and resid-

ual size, i.e., j
� � argmini 	 J

�
t � � pi � pi

�
t � � . We refer to this as the

Shortest Processing Time Product first (SPTP) policy. The ra-
tionale for this can be easily seen by considering the case where
two flows have the same residual size. In this case it should be
clear that to minimize the BTD, one should favor the flow with
the smallest original size. In fact one can show that SPTP is
BTD-optimal in the transient regime.

Theorem 1: At each point in time the SPTP bandwidth al-
location policy will minimize the overall residual BTD for on-
going flows sharing a single fixed capacity link if there are no
additional arrivals.

A proof of this result is given in the appendix. One can think of
SPTP as a greedy online policy in the sense that it always seeks
to do the best for the flows that are currently active, i.e., empty
the system in a manner that incurs a minimum overall residual
BTD. We will show via simulation that SPTP marginally outper-
forms SRPT with respect to the average BTD. We later revisit
this policy when we consider a network scenario.

Recognizing that allocating bandwidth based on SRPT and
SPTP will be difficult in a decentralized framework, we propose
a second class of policies whereby each active flow j has an as-
sociated size-dependent weight w

�
p j � p j

�
t � � , and bandwidth is

allocated in proportion to these weights. Thus by appropriately
selecting weight functions that are decreasing in the residual
size, e.g., w j

�
t � � exp

� � αp j
�
t � � where α � 0, one may approx-

imate the SRPT discipline as α � ∞. Similarly, SPTP can be
approximated by using w j

�
t � � exp

� � α � p j � p j
�
t � � . We refer

to these two size-dependent weighted fair sharing policies as Re-
maining Processing Time Weighted Sharing (RPT-WS) and Pro-
cessing Time Product Weighted Sharing (PTP-WS). Although
Lemma 1 suggests that one can always improve performance
over policies that share bandwidth, such as RPT-WS and PTP-
WS, we will show that they already achieve significant perfor-
mance improvement over fair sharing while allowing flows to
simultaneously make progress towards completion.
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A.3 Performance gains of size-dependent differentiation

Recently [3] showed analytical bounds for the performance
gains that can be achieved by SRPT versus fair sharing for heavy
tailed flows. In this section we shall revisit this and briefly eval-
uate the three policies proposed above, i.e., SPTP, RPT-WS, and
PTP-WS, versus fair sharing via simulation.

Simulations were conducted for a 10 Mbps link shared by
flows arriving according to Poisson processes with sizes se-
lected from a bounded Pareto distribution with mean 5 KBytes.
We will for the most part use this ‘heavy-tailed’ distribution to
model flow sizes throughout the paper. Such distributions have
been widely studied and empirically found to be representative
of the file size on the Internet [26], [27], [28], [29]. Our re-
sults were however found to be robust to other size distribu-
tions. Fig.1 shows the average BTD performance improvement
achieved by size-dependent policies over fair sharing. As can
be seen the four size-dependent policies significantly outper-
form fair sharing with SPTP exhibiting the best average BTD. In
these simulations we use a moderate value α � 1 in RPT-WS and
PTP-WS, but they already exhibit 30-60% improvements over
fair sharing. Based on our experiments, the average BTD per-
formance achieved by RPT-WS and PTP-WS improves quickly
as one increases the value of α.
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Fig. 1. Average BTD improvement for SRPT, SPTP, RPT-WS, and PTP-WS
over fair sharing as traffic load increases.

In summary there are various bandwidth allocation ap-
proaches that favor small flows, and they tend to significantly
reduce the average BTD for the single link case. A criticism
brought against these SRPT-like polices is their potential to in-
duce starvation for large flows. However [3] and [4] have argued
and shown that this conclusion does not apply in the case where
the flow sizes have a large variance - which is typical of files
transferred over the Internet [26]. Our own experiments also
confirm that starvation is indeed not a concern, particularly as
compared to fair sharing. Refer to [7] for a more detailed dis-
cussion.

B. Sharing bandwidth on networks

Although the single link case suggests one should ‘always’
favor small flows in order to minimize the average BTD, this
turns out not to be true in general. In the network case a flow
with a small residual size may contend for bandwidth with mul-
tiple sets of flows on disjoint routes which could be served in
parallel. This leads to a trade off between giving preferential
treatment to flows with smaller residual size versus maximizing

the service parallelism that can be achieved. Consider the sym-
metric linear network shown in Fig.2 including m links with the
same capacity c, and m short and 1 long route. Even if there

c c c

m−hop jobs (r=0)

1−hop jobs (r=1)

Fig. 2. Linear network: m equal capacity links.

were a flow with a small residual size on the long route, one
may wish not to allocate the full capacity on all the links to it,
since this would temporarily ‘block’ the concurrent service of
flows on various short routes. In the sequel we will consider this
linear network in more detail as a means to identify the charac-
teristics that a ‘good’ bandwidth allocation might have.

B.1 Example: Symmetric Linear Network

To simplify our analysis, suppose that bandwidth allocation
among flows sharing the same route is independent of the ag-
gregate bandwidth allocated to that route, and follows the SPTP
policy introduced in

�
III-A. That is, at any given time t, the

aggregate route bandwidth yr
�
t � will be allocated to the flow

that has the smallest product of original and residual size among
all flows on route r. We shall refer to the SPTP discipline as
our ‘intra-route’ bandwidth allocation policy, i.e., dictating how
bandwidth is allocated among flows sharing the same route.
The question then is to identify the aggregate route bandwidths�
yr
�
t ��� t � 0 � r � R � to allocate to each route, i.e., a good ‘inter-

route’ bandwidth allocation.
For succinctness we refer to the long route as the m-hop route

and give it route index r � 0, while the set of short routes are
referred to as 1-hop routes and indexed by r � 1 � 2 � � � � � m. Since
link capacities are equal, it should be clear that each 1-hop route
can be allocated the same aggregate route bandwidth without
compromising optimality, i.e., c minus that allocated to the m-
hop route. This means that we need only consider bandwidth
allocations which give the same bandwidth to all 1-hop routes.
In the sequel we let y1

�
t � denote the aggregate bandwidth allo-

cated to any of the 1-hop routes, and y0
�
t � be that allocated to

the m-hop route. This symmetry in the topology significantly
simplifies the state space, and thus the analysis of interactions
among routes. In particular, the dynamics on this network cor-
respond to m-hop flows contending for a ‘single bottleneck’ re-
source of capacity c with ‘all’ flows on 1-hop routes, but where
some of the 1-hop flows can be served in parallel. By analogy
with Lemma 1 for flows sharing a single link, one can show a
‘no-sharing’ result for the symmetric linear network. The proof
is similar to that of Lemma 1, and thus omitted in this paper due
to limited space.

Lemma 2: A BTD-optimal inter-route bandwidth allocation
y

�
for flows on a symmetric linear network (see Fig.2) is such

that at any time t either y
�
0

�
t � � 0 or y

�
0

�
t � � c �

Combining the necessary condition in Lemma 2 with the as-
sumption that flows on the same route are allocated bandwidth
according to the SPTP policy, below we determine a BTD-
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optimal inter-route bandwidth allocation policy for the linear
network in the transient regime. More specifically, the policy
determines whether to allocate the full capacity c to the m-hop
route (or 1-hop route otherwise) at any time t such that the over-
all residual BTD is minimized assuming no arrivals after time
t. Before presenting this last result we introduce some further
notation. Without loss of generality, we shall separately index
the n0

�
t � m-hop flows and all n1

�
t � 1-hop flows in the network at

time t according to their finishing order assuming that they are
served according to SPTP among flows on the same route. To
distinguish the flows that belong to different route types, we use
p0

j and p1
j to denote the original size of the jth m-hop and 1-hop

flow to complete, respectively. Similar notation applies to the
residual size. Furthermore, we define the cumulative residual
work, p̃s

j

�
t � � ∑i

�
j & ri � r j

ps
i

�
t ��� s � 0 � 1, as the total residual

work that needs to complete on the route associated with flow
j prior to its completion. We assume ties are broken arbitrarily.
Now we may present our policy.

Algorithm 1 (Greedy Algorithm for Linear Network) At any
time t, y

�
0

�
t � � c and y

�
1

�
t � � 0 if

1

p0
1

� c

p̃0
1

�
t �� ��� �

max-wgt-thruput

(m-hop route)

� max
k � 1 � 2 � � � �	� n1

�
t �


 � 1
k

k

∑
l � 1

1

p1
l

� � � k � c

p̃1
k

�
t � ���� �� �

max-weighted-throughput

(1-hop routes)

(1)

and y
�
0

�
t � � 0 and y

�
1

�
t � � c otherwise.

Theorem 2: At each point in time Algorithm 1 minimizes the
overall residual BTD for flows on the linear network shown in
Fig.2, assuming that SPTP is the intra-route policy and there are
no future arrivals.

In other words, Algorithm 1 is BTD-optimal for the symmet-
ric linear network in the transient regime. Despite its lengthy
proof (given in the appendix), (1) has a fairly simple interpreta-
tion. In deciding whether to allocate bandwidth to the long or
short routes, one needs to assess which option will lead to the
highest ‘weighted throughput’ considering various finite time
windows into the future. More specifically, the throughput over
a time window, measured in flows/sec, is given by the number of
flows that complete service in that window. The weight is given
by the average of the reciprocal sizes for the flows that com-
plete service in the window under consideration. Intuitively, this
weighting factor accounts for the impact that completing these
flows has on BTD. Because of the possibility that one might
achieve a higher weighted throughput by serving flows in paral-
lel, one should not put excessive emphasis on favoring small
flows traversing long routes when deciding inter-route band-
width allocation.

B.2 Size-Based Adaptive Bandwidth Allocation

The above example shows the potential complexity of a BTD-
optimal policy for the transient regime. Even for a simple toy
network, one may need to account for the sizes of almost all
flows (the ‘smallest’ m-hop flow and all 1-hop flows) to deter-
mine a bandwidth allocation that minimizes the overall residual
BTD. We will show later via simulation that this policy exhibits

excellent performance as a greedy online strategy for allocating
bandwidth on a symmetric linear network. However it does re-
quire a centralized agent to coordinate across flows and routes
to determine dynamic changes in the bandwidth allocation. As
a step towards a more practical realization, below we propose
a general class of bandwidth allocation criteria where per-user
weights that depend on residual sizes are considered. Follow-
ing [11], [13], [15], we define a class of size-dependent adaptive
bandwidth allocations (SABA).

Definition 1: Let J
�
t � denote the set of active flows at time

t, and p j
�
t � be the residual size of flow j � J

�
t � . A bandwidth

allocation,
�
x

� �
t ��� t � 0 � , is said to satisfy Size-based Adaptive

Bandwidth Allocation (SABA) criterion if and only if at each
time t,

x
� �

t � � argmax
x

�
t � ∑

j 	 J
�
t �

w j
�
t � � Uβ

�
x j
�
t � �

such that

∑
j 	 J

�
t �

Alr j x j
�
t � � c ��� l � L �

where w j
�
t � is flow j’s weighting function depending on the

residual flow sizes at time t, and

Uβ
�
x � � � log x β � 1 ��

1 � β ��� 1 � x1 � β β � 0 and β �� 1 � (2)

is a utility function characterizing the sensitivity of a flow to its
bandwidth allocation. The first order optimality condition can
be written as follows: at any time t, x

� �
t � is optimal if for any

other feasible allocation x
�
t � we have that

∑
j 	 J

�
t �

w j
�
t � x j

�
t � � x

�
j

�
t ��

x
�
j

�
t � � β � 0 �

Bandwidth allocations associated with maximizing the util-
ity functions defined in (2) with fixed weights have been con-
sidered in [11], [13], [14], [15]. Notice that maximizing the
overall user utility subject to resource constraints naturally fa-
vors flows that use fewer resources, therefore achieving higher
service parallelism. Our premise here is to introduce per-flow
weights that increase as the residual size of flow goes down.
By appropriately selecting a dynamic residual-size dependent
weight function and a concave utility function, SABA can trade
off favoring small flows versus achieving high parallelism. In
[7] we discussed in detail how the choices of weight functions
impact SABA’s performance. In this paper we follow the guide-
lines provided in [7] and consider a version of SABA employing
reciprocal weight functions, i.e., w

�
p j
�
t � � � �

p j
�
t � ��� α.

We have conducted a variety of simulations to demonstrate
the benefits of using SABA, see [7]. A representative result is
exhibited in Fig.3, where we examine various bandwidth alloca-
tion policies on the afore-mentioned symmetric linear network.
As expected, traditional fairness criteria achieve similar average
BTD.3 By contrast, SABA and the greedy optimal policy (Algo-
rithm 1) significantly outperform those based on the traditional

3Note these results correspond to ‘idealized’ fluid-flow simulations where
upon flow arrivals and departures bandwidth allocations are re-computed based
on the appropriate criterion and then frozen during inter-event periods. This cuts
down simulation time significantly.
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fairness criteria - achieving improvements of up to 58% when
the links are 80% loaded. The ‘dynamic’ residual size based
weight function contributes to the success of SABA. With such
weights even if discrimination among flows is small at a given
point in time the dynamics are such that bandwidth allocation
will be increasingly biased as flows progress towards comple-
tion. Hence if a given bandwidth allocation favors a small flow
or achieves good parallelism, then this will be reflected in the
relative increase in weights for the associated flows - letting
these flows gain momentum and finish.
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Fig. 3. The average BTD achieved by SABA, the greedy algorithm, and tra-
ditional fairness criteria on a 5-link linear network where each link has ca-
pacity 10 Mbps, the loads are symmetric, and the flow size distribution is
bounded Pareto with mean 5 KBytes.

Note that, for the reciprocal weight shown above, increasing
α increases the bias towards flows with a small residual flow
size. By contrast increasing β, i.e., changing the utility func-
tion, decreases both the extent to which parallelism is empha-
sized, i.e., discrimination against flows which traverse multiple
links, and reduces the impact of the weights4. The coupling
between these parameters may be complex, but we have found
performance be fairly robust with moderate choices of α and
β. Other choices for the weight functions (e.g., depending on
all flow sizes sharing a route) permit a decoupling in the band-
width allocation among routes versus how it is shared among
flows sharing the same route. This decoupling can in turn lead
to further performance gains - see [7].

IV. REALIZING SABA

For the simple case proposed above where the weight func-
tion associated with a flow depends only on its own residual size,
it is fairly straightforward to implement a decentralized mech-
anism that approximates SABA. Indeed, the end-system need
only track the amount of data that remains to be transmitted, and
modulate the ‘aggressiveness’ of TCP’s congestion avoidance
mechanism based on the residual flow size. A simple proof-of-
concept implementation, TCP SAReno, is proposed in [7]. Let
us briefly summarize how SAReno might be implemented by
contrasting it with Reno. It requires a few changes on the sender
side. An ‘initial size’ parameter is passed from the application
layer to the SAReno transport layer, which will thereafter keeps
track of the residual size of the transfer by tracking byte-wise
acknowledgments. In each SAReno flow the ‘additive increase
rate’ and ‘multiplicative decrease ratio’ is modulated based on

4For details see [15], [18], [7]

the residual size of the transfer. To reduce frequent changes in
these parameters we have quantized flow sizes into regions 5.
Note that if the initial flow size is not known, as would be the
case for dynamic web contents, then a crude estimate would suf-
fice.

TCP SAReno is compared against TCP Reno in [7]. In this
case, packet-level simulations, including the intricacies of the
real world, e.g., round-trip times, the slow start phase, etc., give
remarkable performance gains in terms of the average BTD, on
the order of 30-40% on various networks. An interesting ques-
tion is how SAReno and Reno flows might fare if they coexist
on a network. Note that in such a scenario, Reno flows have es-
sentially a ‘constant aggressiveness’ with a fixed linear increase
rate and 50% multiplicative decrease ratio, while SAReno flows
exhibit increasing aggressiveness as the residual flow size de-
creases. We conducted simulations to examine how the per-
formance benefits would accrue as the penetration of SAReno
flows increases. The simulations presented below concern a 6-
branch star network.

We first consider a random penetration scenario, where the
transfers mediated via SAReno rather than Reno were selected
at random according to the penetration level being simulated.
Fig.4 shows the normalized average BTD over all flows, for
Reno flows only, and for SAReno flows, as the percentage of
SAReno flows increases. They are normalized by the average
BTD that would be achieved when all flows are mediated via
Reno, i.e., 0% SAReno flows. As seen, on average SAReno
flows will see better performance (the normalized BTD is less
than one) for all penetration levels. Moreover Reno flows will
also see improved performance once the penetration of SAReno
flows exceeds 20%. The fact that SAReno flows consistently
see better performance than Reno flows suggests that users will
have proper incentives to upgrade from Reno to SAReno.
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Fig. 4. Normalized BTD (over the case where all flows are Reno) as the per-
centage of (random) SAReno flows increases.

Alternatively SAReno might not be deployed in the homoge-
neous manner discussed above, but in a clustered manner cor-
responding to, say, access domains that adopt the new transport
service. For example, one might have an increasing number of
access domains that use SAReno. We examined the average
BTD performance as one increases the number of access nodes
on the star network that mediate transfers via SAReno. Fig.5
shows the normalized average BTD over all flows, Reno flows,
and SAReno flows as the number of SAReno domain increases
from 0 (all Reno) to 6 (all SAReno). Again the average BTDs

5Reader may refer to [7] for detailed values used for each quantized category.
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are normalized by that achieved when all flows are mediated via
Reno. One can observe that when one deploys SAReno on a
per-domain basis, it has an even quicker impact than the homo-
geneous random deployment scenario - see Fig.4. This is to be
expected since intra-route discrimination can be more effective
when SAReno flows originate from the same access domain.
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Fig. 5. Normalized BTD (over the case where all flows are Reno) when one
increases the number of domains that sends SAReno flows.

V. BENEFITS BEYOND IMPROVING THE AVERAGE BTD

We have proposed a fairly ‘straightforward’ mechanism for
residual size based differentiation (SD) at the transport level
that achieves a significant average BTD improvement over tradi-
tional mechanisms, i.e., fair sharing (FS). In this section we shall
discuss various practical aspects that may limit, or enhance, the
potential gains of SD over FS bandwidth allocation.

A. Network dimensioning

Suppose a network is provisioned to meet a given average
QoS target, e.g., BTD, then what would be the value of im-
plementing SD over FS? One way to measure the gains is to
evaluate the capacity savings, i.e., the reduction in provisioned
capacity to meet the same QoS target. However assuming a net-
work provider has prior estimates for flow-level traffic loads and
QoS targets for network dimensioning may be unreasonable. A
complementary question would be: given a fixed capacity, how
much more traffic load one can support on a network using SD
over FS? We answer this question by examining two queues,
M/GI/1-PS and M/GI/1-SRPT which model FS and SD, respec-
tively. The difference in the traffic load the two queues can sup-
port while achieving the same average BTDs are shown in Fig.6.
We plot two lines that connect points indicating the maximum
load one can support under FS (y-axis) and SD (x-axis) when the
target average BTD decreases. The two lines are associated with
the flow size distributions being bounded Pareto and exponen-
tial, respectively. By comparing with the x � y line, one can see
the increase in the range of loads achieved by using SD versus
FS. For example, in the case of the bounded Pareto distribution,
SD offers a 30% increase in the traffic load that can be supported
using FS for a given average BTD target. One can interpret this
gain as revenue increase for a network service provider by either
admitting more traffic or offering a more robust network that can
tolerate larger traffic fluctuations.

40 50 60 70 80 90
30

40

50

60

70

80

90

Maximum Traffic Load (%) − SRPT

M
ax

im
um

 T
ra

ffi
c 

Lo
ad

 (
%

) 
−

 P
S x=y

exp
Pareto

25% traffic range
increase (exp) 

30% traffic range
increase (Pareto) 

Fig. 6. Maximum traffic load one can support under M/GI/1-PS (y-axis) and
M/GI/1-SRPT (x-axis) for same average BTD requirements.

B. What size flows benefit?

Given that size based differentiation is geared at speeding up
smaller flows at the possible detriment of larger flows one might
ask whether an improvement in the average user perceived per-
formance, BTD in this case, is representative. In particular our
results have focused on flow sizes following a heavy tail distri-
bution – as currently seen on the Internet [26], [27], [28]. Such
distributions have a large fraction of flows which are small and
some exceedingly large ones. This is, in a sense, ideal for SD,
as the performance for a large number of small flows can be
improved at a small marginal performance cost to large flows,
possibly leading to a dramatic improvement in the average per-
formance. Moreover speeding up a collection of already short-
lived flows may not really provide a great value from the user’s
point of view. 6

Thus it is of interest to see how the performance benefits of
SD are seen by flows corresponding to different size categories.
Fig.7 shows the average BTD (on a logarithmic scale) seen by
sets of flows with increasing sizes. Flow sizes were divided into
6 bins, where the first bin corresponds to flows of size � 103 � 104 �
bits, the second � 104 � 105 � , and so on. The results are shown for
various loads, including an overloaded case, corresponding to a
‘transient’ finite time simulation of the unstable system, see [7]
for details. As seen, when the load increases SD maintains good
performance for small to medium size flows, while FS ‘uni-
formly’ degrades performance for all flows. In fact SD benefits
the majority of flows (99% of flows fall into the first 5 bins in
our simulated case) while incurring ‘comparable’ performance
degradation to FS for the few very large flows. Refer to [3] for
an interesting analysis of this phenomenon.

The graceful performance degradation achieved by SD as the
system becomes increasingly loaded might be viewed as ben-
eficial in that it ‘masks’ congestion for smaller flows. When
networks/systems in the real world can be occasionally con-
gested for a short period of time, it might be wise to let the
majority of flows, i.e., the small to medium ones, continue to go
through quickly, without slowing down too much for the large
flows as compared to that under FS. Note further that in real-
ity users sharing a congested resource may become impatient

6In practice small flows are likely to be bottlenecked by the slow start phase
and/or possibly large round trip times, whence there is not much of a speed-up
to be realized. Moreover if the performance associated with the flow is already
acceptable, e.g., the total response time is within a second, there may not be
much to gain here.
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Fig. 7. Average BTD for different size flows under FS (top) and SD (bottom)
in the under-load (70%), heavy-load (90%), and overload (110%) regime on
a 10 Mbps link shared by Poisson arrivals with bounded Pareto flow size
distribution of mean 5 Kbytes.

and interrupt their transfers prior to completion. Thus a new
question arises as to how the interaction between the bandwidth
sharing policy and impatient users impacts the overall resource
utilization.

C. Sharing bandwidth among impatient users

Impatient users would presumably interrupt a transfer due
to perceived poor performance, e.g., delay, throughput, or the
progress of the transfer. This may in turn cause poor network
utilization or goodput, i.e., the total number of bits per second
associated with completed transfers. User impatience behavior
can be very complex and change under various circumstances.
In [30] we propose several impatience behavior models and in-
vestigate their interactions with the FS and SD bandwidth shar-
ing policies. In this paper, we will focus on users that are sen-
sitive to a delay constraint d̄, i.e., a user will abort a transfer if
d̄ is exceeded. The authors of [31] propose a simple analyti-
cal approximation for the goodput achieved on a single link that
serves such delay sensitive users based on FS. Below we pro-
pose a similar ‘crude’ model for links using SD, based on the
M/GI/1-SRPT queue.

Let c denote the link capacity and F the flow size distribu-
tion function for flows arriving to the link as a Poisson process.
Following [3], the steady state delay on a possibly overloaded
M/GI/1-SRPT queue for a flow of size p � p

�
can be expressed

as � �D � p � � �� � p

0

ds
1 � ρ

�
s ��� λ

2 ��� p
0 s2dF

�
s � � � F � p � � � F

�
p � � p2�

1 � ρ
�
p � � 2 � 1

c
�

where p
�

is such that ρ
�
p

� � � 1 and ρ
�
p � � λ � p

0 sdF
�
s � � c.

Since ��D � p � � is monotonically increasing in p, one can deter-
mine a unique p̄ such that

p̄ � argmax � p
� � �D � p � � � d̄ � �

Assuming a flow of size p sees exactly its expected delay
� �D � p � � , then all flows with size exceeding p̄ would interrupt
their transfers. Thus one can approximate the goodput (bits/sec)
and throughput (transfers/sec) associated with a system using
SD and supporting impatient users by ρ

�
p̄ � and λ� p̄

0 f
�
s � ds, re-

spectively. These approximations should be conservative since

the above expressions do not account for the reduced load re-
sulting from users actually aborting their transfers, i.e., leaving
the system.

Fig.8 and 9 show the analytical approximations and simula-
tions for the goodput and throughput achieved on overloaded
FS and SD links supporting impatient users with increasing tol-
erance to delay and increasing load, respectively. We draw the
goodput and throughput as in the percentage of the link capac-
ity and the offered load (in transfers/sec), respectively. As can
be seen both the goodput and throughput achieved by SD are
significantly larger than FS under various conditions. Moreover
these measures degrade dramatically under FS as the traffic load
increases. By contrast, SD maintains a fairly good resource uti-
lization, i.e., goodput, and lets most flows go through even the
system is loaded beyond 200%. Thus not only does SD provide
improved performance, e.g., reduced BTD, to users over FS, but
it ensures the network resources are effectively used even upon
overload, making the network robust to traffic variations.
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Fig. 8. Goodput (top) and throughput (bottom) achieved under M/GI/1-FS and
M/GI/1-SRPT queues shared by impatient users with a homogeneous delay
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Fig. 9. Goodput (top) and throughput (bottom) achieved under M/GI/1-FS and
M/GI/1-SRPT queues shared by impatient users with a homogeneous delay
constraint as one increases the offered load.

The above analysis assumes the users have homogeneous im-
patience behavior, i.e., all users have the same delay constraint.
We further conduct simulations to examine systems in which
users have heterogeneous impatience. For simplicity, we con-
sider a 200% loaded single link serving two types of delay sen-
sitive users. Both types offer traffic load that equals the link
capacity and have delay constraints of 1 and 5 seconds, respec-
tively. Table II shows the goodput and throughput (again as
a percentage) for the two user types under FS and SD. These
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results suggest that SD can achieve a higher overall utility by
letting more users with a delay constraint of 1-sec go through,
without compromising those with the 5-sec constraint. In fact,
by examining other scenarios with mixed heterogeneous users,
we find that under FS the users with a smaller delay constraint
are increasingly penalized when the difference in delay con-
straints among users increases, while SD consistently achieves
good but still differentiable performance for users with different
level of impatience.

TABLE II

GOODPUT AND THROUGHPUT ACHIEVED FOR HETEROGENEOUS DELAY

SENSITIVE USERS (1-SEC,5-SEC) UNDER FS AND SD.

FS SD
Goodput (%) (26.8%,48.0%) (45.9%,51.9%)
Success Rate (%) (77.3%,95.8%) (94.9%,96.5%)

As evidenced by the use of today’s Internet, it seems to be
unavoidable for users to experience congestion, possibly only
occasionally, and thus interrupt or continue their transfers based
on how much they value each transfer. In fact, without any ad-
ditional traffic differentiation scheme, each user’s (im)patience
may be already a good expression of his utility to complete a
transfer. The above findings suggest that using SD (versus FS)
one may achieve both differentiation among users with different
patience/utility, and high throughput for all types of users upon
overloads. Furthermore, SD may offer an additional incentive
for users to stick with their transfer if congestion arises, rather
than repeatedly interrupting and re-trying. This will lead to yet
another user self-differentiation and hence a more efficient use
of resources.

D. Do peak rate constraints limit the benefits ?

As argued by [31] today’s best effort data networks may look
much more like circuit switched networks, in that flows are ‘in-
dividually’ peak rate constrained, either by their access links,
e.g., modem/wireless users, or intrinsic limitations of TCP, e.g.,
maximum window size divided by round trip time. Thus from
the point of view of core network links/routers, only a very high
traffic load would cause such flows not to see their peak rate
constraints. Thus a natural question arises as to whether SD will
realize the gains we have discussed above in practice.

Clearly if users are peak rate constrained, the degree to which
SD can differentiate allocations among users with different
residual flow size decreases, and thus the improvement in the
performance over FS will decrease. This of course depends on
the degree to which the link is loaded, i.e., differentiation can
achieve higher benefits at higher loads. Fig.10 shows how close
the performance improvement achieved by SD is to the opti-
mal (i.e., performance associated with having access to the peak
rate) when one compares both with FS, under various peak rate
constraints and traffic loads. As can be seen SD achieves almost
optimal performance. The improvement is significant if flows
(1) share heavy or overloaded resources and (2) are not signifi-
cantly constrained relative to the bottleneck capacity. Note that
in practice, user flows are ‘concentrated’ into increasingly large
capacity links, e.g., data grooming gateways, prior to reaching

the backbone, and then go to the destination access network.
Hence effectively the peak rate of a (possibly aggregate) flow
from a concentration link’s point of view will be the capacity
of the previous concentration point, i.e., not that far away from
it’s own capacity. Furthermore, it is also unlikely that all such
data grooming points are overprovisioned. Our experiments [7]
find that for such typical hierarchical networks, SD consistently
achieves high performance improvements.
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Fig. 10. Improvements in average BTD achieved by SD over FS as compared
to the optimal performance (i.e., peak rate) over FS on a single 10 Mbps
link with Poisson arrivals of bounded Pareto flow sizes, as one increases
the homogeneous peak rate constraints and loads.

As with the case of user impatience, we can view an individ-
ual peak rate constraint as a user’s tacit indication of the utility
of his/her transfers. Thus an appropriate metric for system per-
formance, or utility, is the fraction of the transfers that achieve
throughput close to their individual peak rate constraint. Our
simulations show that under SD about 95% of the flows see a
throughput exceeding 90% of their peak rate, while only 42%
of the flows see this under FS. In Fig.11 the afore-mentioned
percent of users perceiving ‘good’ throughput are broken out by
flow size. As expected in order to achieve these benefits SD
favors shorter to medium sized flows, compromising the larger
ones, where the differences for the large ones are relatively small
as compared to those for the small to medium ones.
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Fig. 11. The proportion of flows within various size bins that realize 90% of
their peak rate (1Mbps) on a 10 Mbps link supporting a 90% load.

In a system with heterogeneous peak rates, we [7] find that
flows with reduced constraints (larger peak rates) would see sig-
nificant performance improvements under SD over FS, while
those with tight constraints will mostly see their peak rates un-
der both SD and FS. This is an arguably desirable characteristic
since users with larger access rates typically pay more, so the
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system may achieve a higher utility for them and for the net-
work/service provider.

VI. CONCLUSION

In this paper, we propose to enhance user perceived perfor-
mance by differentiating based on the residual flow sizes. In
particular, we propose to realize the size-based differentiation at
the transport layer by a small alteration of TCP Reno. A com-
mon concern with size-based differentiation is the possibility
that malicious users may cut their files into small pieces and
transfer them in parallel, or even cheat on their file sizes. This
is an inherent problem with end-to-end flow control and the In-
ternet where a cooperative environment is assumed. To resolve
such matters, either an appropriate policing scheme needs to put
into place or a pricing scheme that makes such behavior expen-
sive would be required. This is however outside the scope of this
paper. We shall simply note that many cooperative environments
do exist where our scheme would provide many advantages.

As mentioned in the introduction, other researchers have con-
sidered benefits that size based differentiation might provide
on today’s best effort networks. For example, the work of [5]
makes a convincing argument for implementing SRPT-like poli-
cies at the ‘server’ side in order to enhance server performance.
From a system performance point of view this approach recog-
nizes that the server may be a bottleneck, and proposes differ-
entiation at the ‘application/os’ level rather than the transport
level. This approach achieves similar performance gains for the
servers as those for the single link case discussed in this paper,
but ignores the possibility that bottlenecks may arise elsewhere
on network resources, e.g., links shared by a server farm, etc.
Implementing differentiation at the transport layer takes a more
global view of congestion, but requires a cooperative environ-
ment, i.e., adoption of a new protocol. We have shown that net-
works supporting a mix of transport protocols might be designed
to share the network effectively. We believe that combining size-
based differentiation with peak access rate policing and/or user
self-admission resulting from impatience, may be a reasonable
avenue to maximizing the overall utility of a best effort network,
without excessive complexity.

APPENDIX

I. PROOF FOR LEMMA 1

Proof: We will prove a more general case where a pre-
determined time-varying link capacity is considered. Let J
denote the set of flows that share a single link with capacity
c
�
t ��� t � 0. Consider a bandwidth allocation x � �

x j
�
t ��� j �

J � t � 0 � that allocates positive bandwidths to more than one
flows during some time interval � t � � t

� � τ � for some τ � 0. We
denote the set of flows that receives positive bandwidth during
� t � � t

� � τ � as J 
 � t � � t � � τ ��� J where
�
J 
 � t � � t � � τ � � � 1. Fur-

thermore, define A
�
t � ∞ � � � j

�
j � J � a j � t

� � . Consider the flow
k � argmin j 	 J � A

�
t � ∞ � � f j � where f j is the finishing time of flow

j. In the sequel we will show that one can always improve flow
k’s delay and thus its BTD without increasing any other flow’s
delay by slightly altering x.

First, consider the case where k � J 
 � t � � t � � τ � . Let x � ��
x � j
�
t ��� j � J � t � 0 � be an alternative feasible bandwidth allo-

cation which only differ from x during the time interval � t � � fk �

in that (1) a full ‘reduced’ capacity c̃
�
t � � c

�
t � � ∑ j 	 A

�
t � ∞ � x j

�
t �

is allocated to flow k until it finishes, (2) arbitrary bandwidths
allocated to all flows j � J � A

�
t � ∞ � � k during � t � � fk � requiring

that � fk
t � x � j

�
t � � � fk

t � x j
�
t � , and (3) no changes for flows in A

�
t � ∞ � .

Clearly flow k will finish earlier than fk under the new x � , since
xk
�
t � � c̃

�
t � during at least � t � � t

� � τ � . Meanwhile, since other
flows in j � J � A

�
t � ∞ � � k completes the same amount of work

during � t � � fk � and none of them finishes before fk even under
x, they do not see a change in their delay. Finally, no flow in
A
�
t � ∞ � sees any change under x � since they have the same band-

width allocation.
Next we consider the impact of x � for the scenario where k ��

J 
 � t � � t � � τ � . Clearly, flow k’s delay is still smaller under x �
since xk

�
t � � 0 during � t � � t

� � τ � . Same arguments apply for
the other flows, and thus the theorem follows.

II. PROOF FOR THEOREM 1

Proof: According to Lemma 1 we only need to determine
the optimal ‘service’ order of the flows in J

�
t � , the set of on-

going flows at time t. Without loss of generality, we index the
flows in J

�
t � according to the non-decreasing order of p j � p j

�
t �

with ties broken arbitrarily, i.e., pi � pi
�
t � � p j � p j

�
t ����� i � j.

Also for convenience we assume unit link capacity.
Consider a service order Ψ that does not follow the SPTP

rule, i.e., there exists at least one pair of flows
�
i � j � such that

pi � pi
�
t � � p j � p j

�
t � but i is served after j. For convenience we

call such pair to be ‘non-conforming.’ Note that there must exist
at least one non-conforming pair that is in consecutive service
order within Ψ. Let i and j � i � 1 denote one non-conforming
and consecutive pair of flows. Now if we consider a new service
order Ψ � that is the same as Ψ except it swaps the service order
of i and j. The difference in the residual BTD is

∑
k 	 J

�
t �

dΨ �
k

�
t �

pk
� ∑

k 	 J
�
t �

dΨ
k

�
t �

pk
� pi

�
t �

p j
� p j

�
t �

pi
� 0 �

The last inequality is due to that pi � pi
�
t � � p j � p j

�
t � . Con-

tinuing this swapping procedure one will have a service order
within finite steps that satisfies SPTP with each swapping step
resulting in less overall residual BTD. Note that having multiple
service orders satisfying SPTP can only happen when there is a
tie in pk

�
t � � pk. These service order however incur no difference

in the overall residual BTD. Thus a service order that follows
SPTP must minimize the overall residual BTD.

III. PROOF FOR THEOREM 2

Proof: For convenience we set cl � 1 and re-normalize all
the parameters accordingly. We decompose the residual delay
(and thus the residual BTD) for each flow into two components:
(1) the total service time consumed by the flows on the same
type of route that finish before that flow completes (thus includ-
ing itself), and (2) the service time consumed by the flows on
the other route type that are considered to be served before the
given flow. Since the capacity should always be fully allocated
to one of the route types (Lemma 2) and we assume SPTP to
be the intra-route policy, we can determine the service order for
the flows on the m-hop route and that for the flows on all 1-hop
routes regardless of how they are scheduled with respect to those
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on the other route type. The service order for route type s � 0 � 1
thus follows the non-decreasing order of p̃s

j

�
t � , as defined in the

text, and p̃s
j

�
t � is in fact the first delay component for flow j (the

jth flow to finish) on route type s.
Thus to minimize the overall BTD, we should minimize the

residual BTDs due to the second component. Note that the sec-
ond component is determined by how one interleaves the two
service schedules for the m-hop flows and 1-hop flows. With-
out loss of generality we consider when to start serving each of
the m-hop flows among the 1-hop flows one by one. Suppose
we start serving m-hop flow j immediately after k 1-hop flows
finish. The total residual BTD contributed by the second com-
ponent to the m-hop flow j and all 1-hop flows is

∆b
�
j � k � � p̃1

k

�
t �

p0
j � p0

j
�
t � �

n1
�
t �

∑
i � k 
 1

1

p1
i

�

where p̃1
0

�
t � � 0, and k � 0 corresponds to the case where the

m-hop flow j is served before all 1-hop flows. This is true for
all j � � 1 � � � � � n0

�
t � � and k � � 0 � � � � � n1

�
t � � .

We now may denote the number of 1-hop flows that should be
served before serving the jth m-hop flow for the purpose of min-
imizing ∆b

�
j � k � as k

�
j

�
t � � argmink 	�� 0 � � � � � n1

�
t ��� �∆b

�
j � k � � . Simple

derivation can show that k
�
i � k

�
j � � i � j since p0

j � p0
j

�
t � is non-

decreasing in j. Thus there exist a set of � k �
j � j � 1 � � � � � n0

�
t � �

that minimizes the set of � ∆b
�
j � k ��� j � 1 � � � � � n0

�
t � � as well as

∑n0
�
t �

j � 1 ∆b
�
j � k � , i.e., the total BTD incurred for all flows due to

the second delay component.
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[13] L. Massoulié and J. Roberts, “Bandwidth sharing: objectives and algo-
rithms,” Proc. IEEE INFOCOM, vol. 3, pp. 1395–1403, 1999.

[14] S.H. Low and D.E. Lapsley, “Optimization flow control I: Basic algorithm
and convergence,” IEEE/ACM Trans. Networking, vol. 7, no. 6, pp. 861–
874, 1999.

[15] J. Mo and J. Walrand, “Fair end-to-end window based congestion control,”
IEEE/ACM Trans. Networking, vol. 8, no. 5, pp. 556–567, 2000.

[16] R. La and V. Anantharam, “Charge-sensitive TCP and rate control in the
Internet,” Proc. IEEE INFOCOM, vol. 3, pp. 1166–1175, 2000.

[17] P. Hurley, J. Y. Le Boudec, and P. Thiran, “A note on the fairness of
additive increase and multiplicative decrease,” Proc. ITC, 1999.

[18] T. Bonald and L. Massoullié, “Impact of fairness on Internet perfor-
mance,” Proc. ACM SIGMETRICS, pp. 82–91, 2001.

[19] G. Fayolle, A. de La Fortelle, J.-M. Lasgouttes, L. Massoullié, and
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